Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Electronics Production |

Printed RFID in 2010

In 2009, the RFID market grew to $5.56 billion, having almost tripled in five years. Being largely based on government backed military, identity card, financial card, passport and other projects and legally mandated requirements such as animal tagging, this market is recession proof, continuing to grow rapidly.

Of the total, $2.18 billion consisted of passive tags, the prime candidate for being printed in future. First to market with entirely printed transistor-based RFID is Kovio with the tag shown below. IDTechEx projects that the market for passive RFID tags will grow to over $10 billion in sales by 2019. Much of it will continue to use silicon chips: for example, a passport chip has over one million transistors and no one will print that anytime soon. China and the USA spend by far the most money on RFID and China will soon overtake the UK in number of projects. (Japan and China tend to have a smaller number of projects but they are much larger in value). The antennas on some RFID tags have been printed for some time. Indeed, in 2007, Hyan Label in China printed HF RFID antennas directly onto paper adhesive labels reel to reel. These gave university students a discount on the Chinese railway system. Checkpoint prints UHF antennas for its tags today. However, all this involves the precious metal silver which is subject to price hikes and, on the occasion of the last hike, Avery Dennison reverted to non-printed aluminium for its UHF RFID antennas. It is hoped that nanosilver inks and dissolved silver inks can result in lower antenna costs and less exposure to silver prices because they use much less silver per antenna. However, these inks are more expensive, partially offsetting the benefit, and adoption in mass production is still awaited. The new printable copper ink may be another breakthrough here. The main cost of the tag is the silicon chip of course. So far, no passive RFID tags have been fully printed beyond experiments and trials because scale up and performance has proved troublesome. However, Kovio is well advanced with ink jet printed nanosilicon on stainless steel foil, having provided HF tags for secret trials to the world's favourite RFID specification ISO 14443. PolyIC promises demonstrator kits of printed transistor RFID on its website in 2010. The number of transistors and therefore the performance of these tags may be less but they may be lower cost in the end and they employ polyester substrate. Because of conductivity and cost problems with organic conductors, we expect PolyIC to print or plate metal antennas. Bottom line is that there is good news and bad news for the printed transistor developers targeting RFID. The bad news is that, in contrast to other applications of printed electronics, highest volume RFID is all about tag cost, not multiple benefits from printing such as tightly rollable, invisible, stretchable or edible. Certainly, none of the increasing number of developers of zinc oxide printed transistors is targeting RFID as first priority as they see their uniques of high current and transparency as more significant in photovoltaics and displays. Tag cost is 50-60% of total system cost in highest volume RFID so cost is the key parameter overall, particularly for highest volume. The good news is that fully printed RFID can be one tenth or less of the cost of the conventional silicon chip based tag. In the long term it will be printed directly onto things like 85% of barcodes today, saving the label cost and getting RFID down to maybe one hundredth of the cost of the conventional RFID tag. IDTechEx believes that the printed RFID labels entering volume production in 2010 have a market potential of at least tens of billions yearly. Ones eventually printed directly onto things, no label being needed, have potential of 100 billion to one trillion yearly in consumer packaged goods, healthcare, postal and other applications. By Dr Peter Harrop, IDTechEx www.IDTechEx.com

Ad
Ad
Load more news
April 15 2024 11:45 am V22.4.27-1
Ad
Ad