© Analog Devices Inc.
Application Notes | April 30, 2021
Optimized power supply measurement setup
Question: How can I make sure I’m testing my switching regulator as efficiently as possible?
Answer: Before a circuit designer decides on a particular power supply, he or she will first want to test it carefully. The data sheet for a switching regulator IC provides valuable information on how the complete power supply could behave in real life, as well as how its respective behavior is always obtained through the testing of a circuit in the lab. Circuit simulations, such as with LTspice®, are useful and can be helpful in circuit optimization. However, simulation does not take the place of hardware testing. With respect to this, parasitic effects are either difficult to estimate or hard to simulate.
Power supplies are thus thoroughly tested in the laboratory. Either a prototype developed in-house or, in most cases, an existing evaluation board from the manufacturer of the respective power supply IC is used for this.
Figure 1. Connections for operation of a power supply.
When connecting the test circuit, a few points should be considered. Figure 1 shows a schematic of the test setup. The design under test must be connected to a power supply on the input side and a load on the output side. This sounds trivial, but there are some important details that must be heeded.
Minimization of Line Inductances
Figure 1 shows a schematic of the setup for evaluation of a power converter. We want to test the behavior of the power circuit and not the effect of the connection lines between the test board and the lab power supply or the load at the output. Two important measures should be taken to reduce the effects of these connection lines. For one, the connection lines should be kept as short as possible. Short lines have lower line inductance values than long lines do. Second, minimization of the current path area further reduces the parasitic inductance. An obvious way to accomplish this is to twist the lines. This results in the current path area only being dependent on the line length and the thickness of the stranded wire sheath. Figure 2 shows the connection of a test voltage converter with twisted connection lines for reduced parasitic line inductances.
Figure 2. Practical operational setup with short twisted cables.
In power supplies based on switching regulators, ac is found both on the input side and on the output side. Depending on the circuit topology, a pulsed current can occur at the input side, for example, in step-down converters (buck controllers). The start-up behavior and operation under load transients must also be tested. Under these operating conditions, the connection lines in the test setup also carry ac.
Addition of a Local Energy Storage Device on the Input
If a power supply is tested with respect to how quickly it can respond to load transients, sufficient energy must be available at the design under test. The energy source on the input side of the design under test should not be the limiting factor. To ensure that this is not the case, placement of a larger bulk capacitor at the voltage supply input is recommended. This is shown in green in Figure 1. It ensures that load transient tests can be performed properly.
However, it must be ensured that the later use of the power supply is subject to very specific conditions. The effect of the energy storage device at the input must be well understood so that the input capacitor for the power supply can be dimensioned correctly.
Another aspect of the bulk capacitor in Figure 1 must also be considered. If voltage transients need to be applied at the input of the power supply to test the resulting behavior, the bulk capacitor would considerably slow down the voltage transients seen by the circuit under test. Thus, for these tests, the capacitor should be removed.
In conclusion there are quite a few things that must be considered in apparently simple tasks related to the design of the voltage supply—for example, connecting a circuit to the laboratory bench. Power lines to the circuit under test, as well as power lines away from the circuit under test, need to be treated as ac circuits and, thus, these cables need to be short and drilled to reduce parasitic inductance in these connecting cables. It is not more effort for the circuit designer to do so and the test results come close to what we actually intend to test. If influences from the test setup are reduced, the rest results will have more value. Over time, experienced power supply engineers have developed methods that optimize the evaluation of circuits. If all the tips in this article are followed, evaluation can be performed smoothly.
Author: Frederik Dostal [frederik.dostal@analog.com] studied microelectronics at the University of Erlangen-Nuremberg, Germany. Starting work in the power management business in 2001, he has been active in various applications positions, including four years in Phoenix, Arizona, working on switch-mode power supplies. He joined © Analog Devices in 2009 and works as a power management technical expert for Europe.


Author: Frederik Dostal [frederik.dostal@analog.com] studied microelectronics at the University of Erlangen-Nuremberg, Germany. Starting work in the power management business in 2001, he has been active in various applications positions, including four years in Phoenix, Arizona, working on switch-mode power supplies. He joined © Analog Devices in 2009 and works as a power management technical expert for Europe.
90,000 square metres – Arrows new Dutch distribution centre
Arrow recently opened its new primary distribution centre (PDC) in Venlo, the Netherlands. The new centre is one of the company’s largest warehouses globally and replaces the existing facilities in the region and also provides increased capacity for future growth.
Sponsored content by RUTRONIK Elektronische Bauelemente GmbH
The Next Level in Advanced Robotics
The key to intelligent, self-controlled industrial and service processes is advanced robotics. Progress in this Future Market relies mainly on better performing electronic elements that make robots more adaptable, perceptive, communicative and mobile, and easier to integrate into processes.
Sivers Semiconductors completes the integration of MixComm
Swedish Sivers Semiconductors says it has completed the integration of MixComm, creating a challenger in 5G, SATCOM and radar.
Inventronics to acquire ams Osram digital systems business
Inventronics has entered into an agreement to acquire the Digital Systems business in Europe and Asia from ams Osram, a global leader in optical solutions.
Allied Motion Technologies acquires Airex
Allied Motion Technologies, a designer and manufacturer of precision and specialty controlled motion products, has acquired Airex, LLC, a privately-owned company providing high precision electromagnetic components and solutions.
Arrow opens new distribution centre in the Netherlands
Arrow Electronics has opened a new primary distribution centre (PDC) in Venlo, the Netherlands. The PDC will function as a key hub serving all customers of Arrow’s electronics components business in Europe.
Smith adds 30,000 square feet of space in Houston
The distributor of electronic components has officially opened its new global services hub in Houston, Texas. The new location adds 30,000 square feet of space for the company’s services.
Samsung invests in Israeli AI systems & semiconductor company
Samsung Ventures has made an investment in NeuReality, an Israeli AI systems and semiconductor company.
Swedes develop new method for manufacturing semiconductor components
AlixLabs from Lund, Sweden, has developed a new method for manufacturing semiconductor components with a high degree of packing, eliminating several steps in the manufacturing process - Atomic Layer Etch Pitch Splitting (APS).
Kinetic closes asset purchase agreement with Gain Semiconductor
Analog and mixed-signal semiconductor company, Kinetic Technologies, has completed the acquisition of certain assets of Gain Semiconductor Incorporated.
Socionext relocation of its US HQ to Milpitas
Fabless SoC supplier, Socionext America Inc. (SNA), has relocated its US headquarters to a34,000 square foot single floor building in the City of Milpitas.
TF-AMD expands with new manufacturing site in Malaysia
TF-AMD Microelectronics plans to expand its manufacturing facility in Penang with the construction of a second site at Batu Kawan Industrial Park, Penang. A move set to create more than 3,000 new jobs.
Ericsson boosts distribution center in Malaysia
Swedish telecom company, Ericsson, has commissioned a new facility at the Kuala Lumpur International Airport (KLIA) that will expand its regional distribution capacity and role of Malaysia in the company.
Applied Materials acquires of Finland-based Picosun
Applied Materials has acquired Finnish atomic layer deposition (ALD) technology specialist Picosun Oy.
Melexis adds new manufacturing and R&D space in Bulgarian
In an update on LinkedIn the company states that it has officially opened ints new “high-tech” building in Sofia, Bulgaria. Melexis says that this new facility will contribute to Bulgaria's presence in areas such as microelectronic, automotive, and innovation.
Arduino finds backing among giants
Open-source company, Arduino, plans to expand its portfolio of hardware, software, connectivity and developer tools for professionals. To reach its goals the company launched a Series B financing round, raising USD 32 million from the likes of Bosch, Renesas and ARM.
Farnell expands Toshiba portfolio to support design engineers
The global distributor says that it has strengthened its global partnership with Toshiba Electronics Europe GmbH (Toshiba), resulting in a significant product line expansion and increased stock holding.
SK hynix pick Lam solution to enhance DRAM production
SK hynix has selected Lam Research's dry resist fabrication technology as a development tool for two key process steps in the production of advanced DRAM chips.
Altair expands and acquires Concept Engineering
Computational science and artificial intelligence company, Altair, has acquired Concept Engineering, a provider of electronic system visualization software.
Infineon liquidating its entity in Russia
One hundred days after the start of the war, Infineon Technologies reaffirms its solidarity with the people of Ukraine. The company states that it made the decision to liquidate its entity in Russia in March already, which is currently being executed.
Atlas Copco acquires provider of semiconductor subfab solutions
Swedish Atlas Copco has acquired Qolibri Inc., a company that provides proprietary technologies for semiconductor subfab operations.
Micron plans recruitment spree in Taiwan
The US DRAM specialist is reportedly planning to add some 2,000 employees and set up a research and development corridor in Taiwan.
TE Connectivity acquires Kemtron
TE advances its capabilities in electromagnetic interference and radio frequency interference shielding via the acquisition of UK-based Kemtron, including its French subsidiary Kemtron Sarl.
Load more news